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Fast and Shadow Region 3-Dimensional Imaging
Algorithm With Range Derivative of Doubly
Scattered Signals for UWB Radars
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Abstract—Ultra-wideband (UWB) radar with its high range
resolution and applicability to optically harsh environments, offer
great promise for near field sensing systems. It is particularly
suitable for robotic or security sensors that must identify a target
in low visibility. Some recently developed radar imaging algo-
rithms proactively employ multiple scattered components, which
can enhance an imaging range compared to synthesizing a single
scattered component. We have already proposed the synthetic
aperture radar (SAR) method considering a double scattered,
which successfully expanded a reconstructible range of radar
imagery with no a priori knowledge of target or surroundings.
However, it requires a multiple integration of the received signals,
requiring the fifth times integration in the 3-D case. Thus, this
method requires an intensive computation and its spatial resolu-
tion is insufficient for clear boundary extraction such as edges or
specular surfaces. As a substantial solution, this paper proposes a
novel shadow region imaging algorithm based on a range deriva-
tive of double scattered signals. This new method accomplishes
high-speed imaging, including a shadow region without any inte-
gration process, and enhances the accuracy with respect to clear
boundary extraction. Results from numerical simulations verify
that the proposed method remarkably decreases the computation
amount compared to that for the conventional method, especially
for the 3-D problem, enhancing the visible range of radar imagery.

Index Terms—Fast and shadow region imaging, multiple scat-
tered wave, range derivative of double scattered signal, range
points migration, ultra-wideband (UWB) radar.

1. INTRODUCTION

Itra-wideband (UWB) pulse radar with high range res-
U olution fulfills its potential for near-field sensing tech-
niques. A robotic sensor is one of the most promising appli-
cations of UWB radar, able to identify a human body even in
optically blurry visibilities, such as dark smog in disaster areas
or high-density gas in resource exploration scenes. It is also
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in demand for non-contact measurement in manufacturing re-
flector antennas or aircraft bodies requiring high-precision sur-
faces. Furthermore, it has a potential for accurate surface extrac-
tion of the human breast for detecting breast cancer, where the
surface reflection from a breast often causes severe interference
[1], [2]. While various radar imagery algorithms have been de-
veloped based on the aperture synthesis [3], the time reversal
approach [4], [5], the range migration [6], [7] or genetic algo-
rithm (GA)-based solutions for domain integral equations [8],
they are not suitable for the above applications because it is,
in general, difficult to achieve both low computation cost and
high spatial resolution. To conquer the problem in the conven-
tional techniques, we have already proposed a number of radar
imaging algorithms, which accomplish real-time and high-res-
olution surface extraction beyond a pulse width [9], [10]. Al-
though these algorithms have been applied to surface imaging,
such as breast cancer detection [2], through-the-wall imaging
[11], or human activity recognition [12], they are actually ap-
plicable only to simple shapes such as convex objects. As a
high-speed and accurate 3-D imaging method feasible for com-
plex-shaped targets, the range points migration (RPM) algo-
rithm has been established [13]. This algorithm directly esti-
mates an accurate direction of arrival (DOA) with the global
characteristic of observed range points, avoiding the difficulty
of connecting them. Although RPM is based on a simple idea,
it offers accurate and super-resolution surface extraction by in-
corporating a frequency domain interferometer [14]. However,
the above methods including [13] and [14] have the unresolv-
able problem that aperture size strictly constrains the imaging
range of a target surface. In many cases, a major part of a target
shape, such as a side of the target, falls into a shadow region,
that is not reconstructed since only single scattered components
are used for imaging.

To resolve this difficulty and enhance imaging range, the
SAR algorithm considering a double scattered path has been
developed [15]. Although this method shows that shadow
region imaging is possible by positively using double scattered
signals without preliminary observations or target models,
which are required in other algorithms [16], [17], the method
requires multiple integrations of the received signals. This
incurs a large computation cost, especially for obtaining a full
3-D image. Moreover, the spatial resolution of SAR is often
insufficient to identify target shapes particularly for edges
or wedges owing to a range resolution limited by frequency
bandwidth of UWB pulse, even if a large aperture size, i.e.,
high azimuthal resolution, is obtained.
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As an essential solution for these problems, this paper pro-
poses a novel imaging algorithm based on the range derivative
of doubly scattered signals, where an initial image obtained by
RPM is used to the best effect. This method is based on an orig-
inal proposition that each DOA of the double scattered points
is strictly derived from the derivative of range points both in
the 2-D and 3-D cases. This proposition enables us to directly
estimate a target boundary corresponding to the doubly scat-
tered centers without any integration procedures. The results of
numerical simulations, investigating various target shapes and
computational complexities, show that the proposed method ac-
complishes high-speed target boundary extraction in situations,
which produce a shadow using existing techniques.

II. 2-D PROBLEM

A. System Model

Fig. 1 shows a system model for the 2-D model. It assumes
a mono-static radar with an omnidirectional antenna scanning
along the z-axis. A static target with an arbitrary shape is
assumed, the spatial gradient of conductivity or permittivity
on its boundary is expressed with Dirac’s delta function [9], a
so-called clear boundary. This assumption is generally accept-
able for most indoor UWB sensors, for which omnidirectional
radiation can be achieved by a small micro-strip antenna, as
in [14], and the surroundings of sensors should be artificial
objects such as furniture or walls with clear boundaries in
terms of the center wavelength of a general UWB pulse. Due
to the static object assumption, the scanning velocity is not
relevant here. The propagation speed c of the radio wave is
assumed to be a known constant. A transverse electric (TE)
mode wave and cylindrical wave propagation is considered. A
mono-cycle pulse is used as the transmitting current. The space
in which the target and antenna are located is expressed by the
parameters (z, z). The parameters are normalized by A, which
is the central wavelength of the pulse. z > 0 is assumed for
simplicity. s'(X,t) is defined as the electric field received at
antenna location (z, z) = (X, 0) at time ¢. §(X, ) is calculated
by applying the Wiener filter to s'( X, t) as

ﬂXJ%:[%MN@S@KwW“@; 1)

where S’(X,w) is the signal in the frequency domain of
s'(X,t). W(w) is defined as

Sref(w)* S
(1= )53 + 1l Seet (W)[2

where ) = 1/(1+(S/N) 1), and S,et(w) is the reference signal
in the frequency domain, which is the complex conjugate of that
of the transmitted signal. Sy is a constant for dimension consis-
tency. This filter is an optimal mean square error (MSE) linear
filter for additive noises. 5(X,t) is now converted to s(X, Z)
using the valuable conversion Z = ct/2\ where c is the speed
of the radio wave.

W(w) = @

B. Conventional Imaging Algorithms

Two methods are introduced as the conventional imaging
algorithms for comparison with the proposed method. One
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Fig. 1. System model in the 2-D problem.

is RPM, which achieves accurate high-speed target imaging
even with a complex-shaped boundary, and employs a single
scattered wave [13], [14]. The second is SAR extended for
double scattered waves [15].

1) RPM: As one of the most promising imaging algorithms
applicable to various target shapes, the RPM algorithm has been
established. First, this method extracts the group of range points
as (X, Zg), which satisfy the local maxima of s(X, 7). Basi-
cally, RPM assumes that a target boundary point (x, z) exists
on a circle with center (X, 0) and radius Zg, following from the
assumption of an omnidirectional antenna and cylindrical prop-
agation of a TE mode wave, and employs an accurate DOA (6
in Fig. 1) estimation by making use of the global characteristics
of the observed range map. The optimum 6, is calculated as

N, X—X:)2 - qg.)n?
R _X=X0) L 0(‘12‘1») }

> slg)e 7k 3)

i=1

where ¢ = (X, Zs), q; = (Xi,Zs;), and N is the number
of the range points. §(q, g;) denotes the angle from the z axis
to the intersection point of the circles, with parameters (X, Zg)
and (X;, Zs;). The target boundary (z, z) for each range point
(X, Zs) is expressed as ¢ = X + Zgcoslopi(q) and z =
Zs sin opt(q). This algorithm ignores range points connection,
and produces accurate target points, even if an extremely com-
plicated range distribution is given. It also has the significant
advantage that each target point (, z) and range point (X, Zs)
satisfies a one-to-one correspondence, which takes a substantial
role in the proposed method described in the following section.

The performance example of RPM is presented here, where
the received electric field is calculated by the finite-difference
time-domain (FDTD) method. The range points (X, Zg) are
extracted from the local peaks of s(X, Z’) which are beyond
the preliminary determined threshold [13]. An example of this
method for the target shape shown in Fig. 1 is presented. Fig. 2
shows the output of the Wiener filter, and the extracted range
points as (X, Zs). The received signals are calculated at 401
locations for —2.5 < X < 2.5. A noiseless environment is
assumed. The positive local maxima are regarded as the range
points originated from the single scattered waves and, on the
contrary, the negative ones are regarded as the range points
originated from the double scattered components, because they
have, in general, an anti-phase relationship. Fig. 3 shows the
estimated target points obtained by RPM. ox = 1.0\ and

foni(q) = arg max
opt () g max
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Fig.2. Output of Wiener filter s(X, Z) for the multiple targets and range points
as (X, Zs) and (X, Zp).
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Fig. 3. Estimated image with RPM for the multiple targets.
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Fig. 4. Estimated image with the SAR I(r) using double scattered signals for
the multiple targets.

oy = /50 are empirically determined by considering robust-
ness and accuracy for imaging, as detailed in [13]. This figure
indicates that the target points accurately express the front side
of the target boundary, but the rectangular side of the boundary
mostly falls into a shadow region. This is because each antenna
receives a distinguishable echo from the target boundary, which
is perpendicular to the direction of the line of sight from each
antenna location. This is an inherent problem in all algorithms
that use only a single scattered wave for target reconstruction.
2) SAR With Double Scattered Signals: SAR employing
the double scattered signal has been developed to enhance the
imaging range, including a shadow [15]. Here, the same system
and signal models are used as in Section II-A. In general, a
double scattered wave propagates with a different path from
that of a single scattered one. It, therefore, often provides
independent information as to the two scattering points. This

method calculates the image using double scattered waves as
Ix(r)

b(r) = — / 'GR/X ()X, dafr ' X)2)X dr )

where ¥ = (a/,2'), R denotes the region of real
space, s(X,*) is the output of the Wiener filter, and
do(r, 7, X) = J(#—X)2+22 + /(o' —X)2+ 22 +
V/(x —a')2 4+ (2 — 2/)2. The minus sign in (4) creates a
positive image focused by double scattered waves that have an
antiphase relationship from a single scattered one. Here, the
initial image I; (r) is defined as the original SAR image as

Il('r):/XGFS(X,dz(r,r,X)/Z)dX. 5)

Equation (4), simple expression of the aperture synthesis of
the received signals by considering a double scattered path,
can be regarded as a coherent integration scheme because
I;(r) denotes the amplitude and its positive outputs offer the
target boundary. Any extension of the SAR algorithm, such as
omega-k migration [18] range-Doppler, can be used in creating
I1(r). The final image is defined as

ey~ BOH ()

maxy I1(r)

I(r)H (I5(r))

maxy Io(1)

(6)

where H (x) is the Heaviside function.

The performance evaluation of this method is shown as fol-
lows. Fig. 4 shows the estimated image I(r) for the previous
target case, using the same data as in Fig. 2. I(r) is normalized
by its maximum value. Fig. 4 shows that the part of the side re-
gion of the rectangular target can be reproduced, and that the
visible ranges of the circle and rectangular boundaries are re-
markably expanded. The reason is that double scattered waves
are effectively focused on the part of the target side in (4). It
also claims that this method does not require target modeling or
a priori information of the surroundings.

However, it requires a triple integration for imaging and its
calculation time goes up to around 60 s for Intel Pentium D
2.8-GHz processor. In the 3-D case, such a large calculation
burden becomes more severe for a robotic sensor because it ba-
sically requires a fifth times integration for each image frame.
Moreover, some false images occur around the target boundary,
due to the range sidelobe of filter responses or other components
like triple scattering ones; it also offers a blurry boundary, where
its spatial resolution is strictly limited by half of a pulse width.

C. Proposed Method

To overcome the problems described for conventional
methods, this paper proposes an accurate high-speed imaging
algorithm for the shadow region. This method employs target
points, which are preliminarily created by RPM, and directly
reconstructs the target points corresponding to the double
scattered signals, where each derivative of the range points is
employed.

1) Principle of Proposed Method: This subsection describes
a basic theory of the proposed method, indicating the relation-
ship between the range points and the doubly scattered cen-
ters. Here, two target points originating from the doubly scat-
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tering are defined as p; = (21, 21) and p, = (22, 22), respec-
tively. As previously described, a double scattered signal has an
anti-phase relationship to a single scattered one [15]; the nega-
tive peaks of s(X, Z) are mostly regarded as double scattered
echoes. Then, (X, Zp) is defined as the range point of a double
scattered wave, which is extracted from the local minimum of
s(X, Z).p;, = (X,0) denotes an antenna location. In this case,
the following proposition holds.

Proposition 1: When 0Zp/0X exists on (X, Zp), the next
relationship holds:

0Zp _ costh +costh
oxX 2

N

where 0; = cos (1 — X)/(Z1)), 02 = cos ((we —
X)/(22)); Z1 = |Ipy = poll, and Zs = ||p, — pp || are defined,
and 0 < 61,605 < 7 hold. This method assumes that a double
scattered path satisfies the law of reflection on each scattering
boundary; that is regarded as a phase stationary condition.

The proof of this proposition is described in Appendix A. It
is naturally derived as |0Zp/0X| < 1, which is used for the
actual procedure of the proposed method, as described in the
following section. If p; = p, holds, regarded as single scattered
case, (7) is equivalent to inverse boundary scattered transform
(IBST) in [9]. Here, p, is expressed as

Py =pr + (ZQ cos by, Zo Sinﬁz) (8)

Once a first scattering point p; is determined, 6> is given as
Y(—20Zp/0X — cosby).

0y = cos™

&)

In addition, if the normal vector as e,, on p, is given, the law of
reflection derives Z5 as

g, = L4E+ (24D = 4)" + 227D — Z1)(p1 —p1) - €3
2 (P —pr) es+2Zp— 27
(10
where
es=e; —2(e,-e1)e, (11

holds with e; = (p; — p.,)/|lp1 — Py ||- The derivation of (10)
is described in Appendix B. p, obviously satisfies the following
condition as
P =P + Zses (12)
where Z3 = ||p, — py|| holds. Fig. 5 shows the relationship
among the scattered points p;, p, and the antenna location p; .
2) Incorporation With RPM: A substantial idea of the pro-
posed method is that it makes uses of the preliminary estimated
target points by RPM as the first scattering location p; with
its normal vector e,,. As previously described in Section II-B1,
RPM directly converts the range points to the target points, sat-
isfying a one-to-one correspondence. Here we define each target
point and range point with RPM as p;*™ = ("™, 2!"™) and

1 bag )
gt = (XM ZPM), (i = 1,... NP™), where NJP™ is the

2

Fig. 5. Relationship among the double scattered points p, , p,, and the antenna
location p; .

total number of target points by RPM. In addition, each normal

vector ;)" on p;°™" is given by
rpm Irpm rpm
rpm __ (X7 — :L'L' 7_2:1', ) (13)
ni Ztpm

K2

This relationship is derived from the assumption that each an-
tenna receives a strong echo from the target boundary, which
is perpendicular to a direction for a line of sight [13]. Equation
(13) indicates that the inclination of the target boundary is di-
rectly estimated without using derivative operations; it is appli-
cable even for a non-differentiable point like an edge. In addi-
tion, target points obtained by RPM on edges are reconstructed
from different antenna locations, because an edge diffraction
wave can be received in a wider observation range. Such points
have different normal vectors, which are directly related to es,
and contribute to the search for a secondary scattering center
first diffracted from an edge.

This algorithm determines an optimal p; from a set
of target points obtalneg by RPM, which is defined as

Topm = {(a: z) € U p;"™}. Here, the parameter vector

P, (i=1,...,N™")is also defined as
= (B;"™:Qp) (14
Qp = (P, Zp,0Zp/0X) (15)
Rzpm = (p;‘pm7 Ep1117e;{):11 elipzm7e§pzm) (16)
where €”" = (p;"" —p.)/|Ip;"™ — p. ||, and €3 is deter-

mined in (11), similarly. To select the optimal p; from Tipm>
two conditions for p, are introduced as follows. First, using (8),
p5'(P;) is defined as

p124(Pz> EpL+(Z2(P )COSHQ( ) ZQ(PZ)SH’IHQ(PL))
(17
where Z5(P;) and 02 (P;) are calculated in (10) and (9), respec-

tively. Second, considering an another condition in (12), pZ (P;)
is defined as

pr(Pq) _ rpm+Z3(P) rpm (18)
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Fig. 6. Relationship between p; and p as two candidates for p,.

where Z3(P;) = 2Zp — Z»(P;) — ||p;"™ — p.||. Fig. 6 shows
the relationship between two candidates for p, as p5 (P;) and

p>(P;). Then, the proposed method determines the optimum
candidate p; for each @ p as

2
p5 (P;)

p(Qp) = argmin |[|p3'(P;) — (19)

rpm
PP €TrpM

The optimum second scattering point p,(Q ) is determined as

Py (P) +pP (P)

ﬁz(QD) = 9

(20)

where P is defined as P;, when the evaluation value in the right
term in (19) becomes minimum. This optimization scheme is
based on the assumption that if p, (Q p ) is the actual target point,
it must satisfy both (8) and (12). Note that this method does
not employ an integration of the scattered signals but directly
determines the double scattering points using the derivative of
the range points.

Furthermore, a false image reduction scheme is introduced.
In the postprocessing, p,(Q ) is regarded as a false image, if
the following condition is satisfied:

((p2(@p)) >

where - is an empirically determined threshold, and {(p,(Qp))
is defined as

2

]\Trpm

Z exp{ D@
Pl

_1P(Qp) —prl
X exp{ 2 (7777 ]3)? } (22)

where D(p"™, 5,(@p). pr.) = [P ~5>(Qp)|1+ 17> (@p) -
pll—p;"" —pL|l and oF = 0.5\ {(p5(Qp)) increases when
the following two conditions are satisfied. First, a large number
of the first Fresnel zones determined by target points with RPM,
regarded as p,, include the double scattering point as p,(Qp).
Second, p,(Qp) exists close to the antenna location compared
to the observed range of single scattering Z;”™. We assume that
both situations are inadmissible for the actual target points. The
similar scheme for a false image reduction is described in [15].
3) Procedure of the Proposed Algorithm: The actual proce-
dure of the proposed method is summarized as follows.
Step 1) A set of target points 7., is obtained by RPM.

p2 QD 20%

,m(QD),pL)?}

Step 2) Range points are extracted as (X,;,Zp ), (J
1,...,Np) from the output of a Wiener filter, ac-
cording to the condition given as

0s(X,7)]07

s(X, 7) 23)

= 0
< ,BmZins(X7Z)}

where Np is the total number of range points of
the double scattered signals, and ( is empirically
determined.

Step 3) Foreach (X, Zp, ), 0Zp, ;j/0X is calculated by the
difference approximation with Gaussian weighting
as

9Zp,j _
0X Np

where opx is empirically determined and N, de-
notes the number of range points of (X, Zp ),
which satisfy |(Zp ; — Zp.x)/(X; — Xi)| < 1. The
parameter Qp, ; is created in (15) is stored into a set
as QD—{(XO ZD78ZD/6X)€U QD,]}

4) For each Qp, ; from Qp, R;"™ is created in (16).
Then, p; (Qp ]) and p,(Qp ;) are determined in
(19) and (20), respectively.

5) If p»(Qp ;) does not satisfy the condition in (21), it
is added to the set of the target points 7p.

6) Steps 4) to 5) are iterated until Qp becomes empty.

7) Obtain the final set of target points as 7 =
ﬂpm U TD .

Step 3) avoids the fatal sensitivity caused by the derivative op-

erations by taking an appropriate value for opx. Although this

method needs an optimization procedure for p,, it requires no

integration process, directly locating the accurate target points.

Step

Step

Step
Step

D. Performance Evaluation Using Numerical Simulation

This section presents numerical examples performed by the
proposed method for two target cases. Fig. 7 illustrates the target
points reproduced by RPM and the proposed methods, where
the true range points for single and double scattered signals
are given by a geometrical optics approximation [15]. Here,
opx = 0.3)\, v = 100, and # = 0.3 are set. This figure in-
dicates that the proposed method accurately creates the target
points around the side of the rectangular boundary. This veri-
fies that if the actual range points are given, our method obtains
extremely accurate boundary extraction, including shadow re-
gions. As a realistic case, Fig. 8 presents the estimated target
points with RPM and the proposed method, where the same data
as in Fig. 2 are used. This figure exemplifies that this method
produces many accurate target points around the rectangular
side. Here, it should be noted that the RPM reconstructs the
rectangular edge points as in Fig. 3, which are converted from
the multiple range points (X, Zs) on the part of the hyperbolic
curve for which |X| > 0.5\ and 1.0 < Zs < 1.5 in Fig. 2.
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Fig. 7. Estimated image with RPM and the proposed method for the multiple
objects, when true range points are given.
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Fig. 8. Estimated image with RPM and the proposed method for the multiple
objects, when range points are extracted from s(X, 7).

Those target points, which can be reconstructed from the dif-
ferent antenna locations, have multiple normal vectors as e,
related to the second scattering directions es as described in
the proposed method. Consequently, even in the case that the
first scattering points exist on an edge, i.e., s(X, Z) includes
an edge diffraction, this method selects the optimum first scat-
tering point p; in (19) and sequentially determines p, for each
(X, Zp). Also, while Zp possibly includes no double scat-
tered range points accidentally extracted from range sidelobes
of single scattered signals, or other scattering components, this
figure validates the fact that the false image reduction postpro-
cessing successfully eliminates these false points. Besides, it has
a great advantage in computation time, which requires less than
0.4 s for Intel Pentium D 2.8-GHz processor with 800 MB ef-
fective memory. As previously mentioned in Section II-B2, the
conventional method costs around 60 s, and it is distinctly im-
proved as to the computation burden. However, some fluctua-
tions of the estimated points occur around the rectangular side,
regardless of a noiseless situation. This is because the method
employs the range derivative in (9), which tends to enhance
small errors caused by the scattered waveform deformations or
other interference effects.

For another target case, a deep-set concave boundary is inves-
tigated. Fig. 9 shows the target points estimated by RPM and the
proposed method, respectively, where the true range points are
given. It is confirmed that our method successfully enhances the
imaging range around the side of the concave boundary, using
the double scattered range points. Fig. 10 shows the output of a

3
K N\
4 \
5 %
o 2] N S SN NS .. ‘S S
]
1
RPM e

0 Proposed o +eo

-2 -1 0 1 2

X

Fig. 9. Estimated image with RPM and the proposed method for the concave
target, when true range points are given.

s(X.2)

Fig. 10. Output of Wiener filter s( X, Z) for the concave target and range points
as (X, Zs) and (X, Zp).
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Fig. 11. Estimated image with RPM and the proposed method for the concave
targets, when range points are extracted from s(X, Z).

Wiener filter, which is calculated by FDTD, and each extracted
range point as (X, Zg) and (X, Zp). Fig. 11 presents the esti-
mated image created by the proposed method. It verifies that, in
the practical case, it can produce accurate target points around
the side of the concave boundary, which are not seen for RPM.
The calculation time is also around 0.4 s with the same processor
previously described, which is definitively improved from that
required by the conventional method around 60 s.

Here, the quantitative analysis is introduced by ¢; defined as

,N1) (25)

ei:;nin||ptrue_pfe|7 (121727
true

where p, .. and p. express the locations of the true and esti-
mated target points, respectively. N is the total number of p..

Fig. 12 plots the number of estimated points for each value of
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Fig. 12. Number of target points for each €;, in the case of Figs. 8 and 11.
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Fig. 13. Estimated image with RPM and the proposed method for the multiple
targets at SN = 30 dB.

€ in both cases as Figs. 8 and 11. It verifies that the number of
accurate target points with the proposed method significantly
increases around 0.03, simultaneously enhancing the imaging
range. The mean value of ¢; as € is 1.25 x 1072\ for the mul-
tiple objects, and this result quantitatively proves the effective-
ness of the proposed method as to accurate imaging. In the case
of the concave boundary, € becomes 1.06 x 10~1 )\, because
there are many false image points over the actual boundary as
in Fig. 11 for both RPM and the proposed method. This inaccu-
racy is mainly contributed by the conventional RPM, not by the
proposed method. The reason for this is that more than a triple
scattering effect produces an unnecessary image.

Furthermore, an example in noisy situation is investigated,
whereby white Gaussian noise is added to each received signal
as s'(X, Z). Fig. 13 shows the estimated points obtained by the
proposed method, where the mean S/N is 30 dB. S/N is defined
as the ratio of peak instantaneous signal power to the average
noise power after applying the matched filter with the trans-
mitted waveform. Although the accuracy of the estimated target
points deteriorates due to the false range points extracted from
noisy components, the whole image can offer a significant target
boundary including the side of the rectangular boundary. Also,
it should be noted that the range fluctuations caused by noise
are effectively suppressed by the Gaussian weighted difference
approach in (24) using an appropriate opx.

Next, the relationship between € and S/N is investigated for
multiple objects as in Fig. 14 for each opx. The figure shows
that the proposed method obtains a sufficient accuracy less than

Opy=02A—
Oy = 0.3 Aomen
Opy=0.4A——
lw 0.1
N
0.01 i
10 20 30 40 50 60
SNR [dB]

Fig. 14. Relationship between € and S/N for each o p x as to the multiple ob-
jects.

0.02X over SN > 30 dB using any value of opx. While this
method requires an apparently high S/N to hold the accuracy, the
definition of S/N used in this paper overestimates the practical
S/N because it considers not only a frequency localization of
the received pulse but also a temporal one. Indeed, the actual
UWRB radar system can achieve this level of S/N. because we
assume a near field measurement, where each receiver obtains
an intensive echo from objects even under the spectrum mask
of the UWB signal [19], and random noises in received signals
can be considerably suppressed using coherent averaging.
Moreover, to consider the applicability of the method to a
realistic scenario, the sensitivity of antenna location to inaccu-
racy is investigated. This is mainly caused by mechanical er-
rors in the scanning system. Figs. 15 and 16 show the output
of Wiener filter with extracted range points and the estimated
image with RPM and the proposed method at SN = 30 dB,
respectively. The spatial errors with the Gaussian distribution
are added to each antenna location (X,0) in calculating the
received signals. The standard deviation of the errors is set to
0.01), which corresponds to 1-mm accuracy for the antenna po-
sitioning, in the case of 100-mm center wavelength of the UWB
pulse. This can be obtained by the real scanning systems used
in [14]. The figure shows that the proposed method still cre-
ates an accurate image including the shadow region; € denotes
1.51 x 1072\ in this case. The first reason for this is that RPM
has a significant tolerance to random noise or system errors be-
cause it employs the global characteristic of the range points
distribution; there is only a slight image degradation as shown
in the figure. The second reason is that the proposed method
employs the smoothing scheme in calculating the range deriva-
tive in (24), and the false image reduction as postprocessing, in
order to avoid image distortions from system errors or receiver
noise and enhance the credibility of the obtained images.
Finally, the limitation of this method is discussed as follows.
The proposed method, which does have some limitations, has
two main requirements: a scanning orbit and a clear boundary
assumption for objects. First, while this paper assumes linear
antenna scanning, it can be extended to arbitrary curvilinear
scanning by modifying (7). However, the scanning line must be
differentiable because the method employs derivative operation
along it. Second, although the method assumes a clear boundary
for objects, in the case of a human body, this assumption is
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5(X.2)

Fig. 15. Output of Wiener filter and extracted range points for the multiple
targets, where random errors are given to antenna locations (X, 0).

3
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Fig. 16. Estimated image with RPM and the proposed method for the multiple
targets where random errors are given to antenna locations (XX, 0).

hardly acceptable, and then, both the conventional and the
proposed methods offer blurry images expressing statistical
scattering centers. On the other hand, with respect to a UWB
waveform, any waveform holding the same equivalent band-
width with lower a range sidelobe is applicable to this method,
for example, a pulse, chirping signal, or spread spectrum
(M-sequence) waveforms. This is because the proposed method
uses only the significant ranges, which can be extracted from
the local maxima or minima of the output of Wiener filter using
any possible transmitted waveform with enough S/N level.
Consequently, the performance limitation depends mainly on
the bandwidth of the transmitted pulse and the S/N level. In
addition, while this paper assumes mono-static observation, it
is easily extended to a bi-static model, required for a realistic
radar constitution, employing the same approach in the pro-
posed method. This is our future task.

III. 3-D PROBLEM

A. System Model

Fig. 17 shows a system model for the 3-D problem. The target
model, antenna, and transmitted signal are the same as those
assumed for the 2-D problem. The antenna is scanned on the
plane, z = 0. It assumes a linear polarization in the direction of
the x-axis. A spherical wave propagation is assumed. R-space
is expressed by the parameter (z,y, z). We assume z > 0 for
simplicity. s'(X,Y, Z) is defined as the received electric field at
the antenna location (z,y, z) = (X, Y,0). s(X,Y, Z) is defined

Omni-directional

antenna z
25
2
1.5
1
0.5
Fig. 17. System model in 3-D problem.
z
z
3 3

3 :
v =0
Fig. 18. Relationship among p,, p, and p, in 3-D model.

as the output of the Wiener filter with the transmitted waveform.
As similar to the 2-D case, The two sets of range points are
extracted from the local maxima and minima as (X, Y, Zs) and
(X,Y, Zp), respectively.

B. Proposed Method for the 3-D Problem

This section describes the 3-D model of the proposed method.
Here, an antenna location is redefined as p; = (X,Y,0). The
first scattering point as p; and the second one as p, are also
redefined as

Z; cos B; cos ¢;
p; = (¢iyvi,zi) =pr, + | Zisinb;cos; |
Zi sin Qbi
(i=1,2) (26)

where 0 < 61,602 < 27 and 0 < ¢1,¢2 < 7/2 hold. Fig. 18
shows the relationship among p; , p,, and p;, in the 3-D model.
Similar to the 2-D model, the following proposition holds.

Proposition2: f0Zp /0X and 0Zp /JY existon each range
point (X,Y, Zp), the next formulations hold:

0Zp _ cosBycos ¢y + cos Bz cos g2

0X 2
0Zp sin #1 cos ¢1 + sin O3 cos po

gy 2

The derivation of this proposition is described in Appendix C.
Once p, is determined, ¢ and > can be calculated as

27)

p2 = cos {\/(20Zp/OX + cosb cos ;)2
+/(20Zp/0Y + sinf; cos ¢1)?}

20Zp/0X — cosby cos ¢y
0y = arg pr—

(28)
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4 <28ZD/8Y—sinﬂlcos¢>1>} 29)

COS ¢2

where j denotes an imaginary unit.
In this extension, target points redefined as p;"™

p; =
rpm _rpm _rpm

(2™, y;P™, 2P™)  corresponding to the range points as
q; = (X;P Y 2P, (i = 1,---, Ng™™) obtained by

2 7 K2 7 2

RPM are employed [13]. Each normal vector e”;" is also
calculated as
n,e Z‘rpm

And then, the parameter vector P; defined in (14) is constituted
by redefining @, = (p;,Zp,07p/0X,07Zp/dY ), and up-
dating e5”;" in (11).

Using the above parameters, the target points in the 3-D
model are basically calculated according to the procedure of
the proposed method in the 2-D case, as in Section II-C3. Some
modifications for the procedure are described below. As in Step
2), the range point (X,Y, Zp ;) is extracted from the output
of a Wiener filter s(X,Y, Z), where the following condition
satisfies:

0s(X,Y,Z2)]0Z = 0 G1)
s(X,Y,7) < Pming s(X,Y, 7)
Also, in Step 3), 0Zp ;/9Y is calculated as
N/
~Zpj— Zpk (Y; — Yi)?
DTy Ty P T g
8ZD1]' k=1 J k DY (32)
oy N

where opy = opx, and N}, denotes the number of the range
points which satisfy |(Zp,; — Zpx)/(Y; — Yi)| < 1 around
(X.Y},Zp,;).

C. Performance Evaluation Using Numerical Simulation

This section presents two examples of the proposed method
with different target cases, using a numerical simulation. The
mono-static radar is scanned for —2.5 < z,y < 2.5, where the
number of locations on each axis is 101. Here, opx = opy =
0.3\, B = 0.3 and v = 100 are set. First, the target boundary
is assumed as in Fig. 17. Fig. 19 illustrates the estimated target
points obtained by RPM and the proposed method, where the
true range points are given by the geometrical optics approxi-
mation, similar to 2-D case. This figure verifies that the imaging
points express a quite accurate target boundary including the
side of the cylindrical objects. This is because the double scat-
tered wave propagates along the side of the toric and cylindrical
boundaries. Next, Fig. 20 shows the range points as (X, Y, Zs)
and (X,Y, Zp) extracted from the output of a Wiener filter,
which is calculated by FDTD. Figs. 21 and 22 depict the es-
timated 3-D image and its cross-section at —0.1 < x < 0.1,
respectively. These figures show that the obtained image of the
proposed method, in this case, accurately creates the side of the
cylindrical boundary, which cannot be reconstructed by RPM.

RPM e
Proposed e +e

Fig. 19. Estimated 3-D image with RPM and the proposed method for the tar-
gets as in Fig. 17, when true range points are given.

Fig. 20. Extracted range points of single and double scattered waves for the
targets in Fig. 17.

RPM e
Proposed e +e

Fig. 21. Estimated 3-D image with RPM and the proposed method for the tar-
gets as in Fig. 17, when range points are extracted from s(X,Y, Z).

There are some divergent images around the target side, which
are basically caused by the errors of range derivatives. This
method creates the target points, not the intensified SAR image,
which contributes to the identification of the edge or wedge re-
gion. Note that, the proposed method requires only 10 s for a
full 3-D image after creating the target points with RPM. This
amount is prominently reduced from that of the conventional
method based on the fifth times integral for imaging after SAR
processing [15], requiring around 10° s.

For another example, a concave target is shown in Fig. 23.
Fig. 24 offers the estimated 3-D boundary performed by the pro-
posed method, where the true range points are given. This ver-
ifies that the proposed method accomplishes an accurate target
imaging including the side of the concave boundary. Fig. 25
shows the extracted range points from the output of a Wiener
filter. Figs. 26 and 27 present the 3-D target image and its cross
section at —0.1 < x < 0.1, respectively, where the received
data is calculated by FDTD. This figure also proves that the pro-
posed method creates an accurate image around the deep side of
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Fig. 22. Cross-section image of Fig. 21 for —0.1 < z < 0.1.

0 RPM e
Proposed e +e

Fig. 24. Estimated 3-D image with RPM and the proposed method for the tar-
gets in Fig. 23, when true range points are given.

7 Zs ®

Fig. 25. Extracted range points of single (black) and double (red) scattered
waves for targets in Fig. 23.

the concave boundary, which is focused by the double scattered
signal.

Furthermore, a quantitative analysis for these examples is pre-
sented as follows. Fig. 28 shows the number of target points
for each accuracy ¢;, that is defined as in (25) for the target
cases as in Figs. 21 and 26. This figure shows that the proposed
method increases accurate target points around 0.03\ and avoids
the accuracy distortion for both target cases. The mean value of

0 RPM e
; Proposed e +e

Fig. 26. Estimated 3-D image with RPM and the proposed method for the tar-

gets in Fig. 23, when range points are extracted from s(X,Y, Z).

True —
RPM e
Proposed o + o

DL

Y

z

Fig. 27. Cross-section image of Fig. 26 for —0.1 < « < 0.1.

Torus+Cylinder Concave

RPM
Proposed

2500

2000

1500

1000

Number of estimated points

500

8,‘/)\,

Fig. 28. Number of target points for each €; in the case of Figs. 21 and 26.

this error index as € is 0.028\ for the toric and cylindrical tar-
gets, and 0.059) for the deep-set concave targets, respectively.
This quantitatively shows that the proposed method enhances
the imaging range even in the 3-D model, accomplishing much
faster image processing.

In addition, an example of a noisy situation is presented.
White Gaussian noise is added to the received signal s(X,Y, Z).
Fig. 29 shows the estimated target boundaries of the RPM and
the proposed method, with S/N around 30 dB. This figure
shows that, while the proposed method suffers from image
fluctuations caused by random noise, it still offers a signifi-
cant image expansion around the side of the torus boundary.
€ = 3.02 x 1072\ in this case.

Finally, the computational complexities of the algorithms
are compared. The conventional SAR based method requires
around O(Nx Ny N2NZN?Z), where Nx, Ny, N, N,, and
N, denote the sampling numbers for the antenna location X, Y,
and the spatial coordinates = y and z, respectively, and O(x)
gives the Landau notation. This is because the conventional
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RPM e
Proposed e +e

Fig. 29. Estimated 3-D image with RPM and the proposed method for the tar-
gets in Fig. 17 at SN = 30 dB.

TABLE I
CALCULATION TIME (FOR INTEL PENTIUM D 2.8 GHz PROCESSOR) AND
COMPUTER COMPLEXITY OF EACH ALGORITHM

Calculation time | Computational complexity
Conventional | Around 10% sec O(Nx Ny NZNZNZ)
Proposed 10 sec O(N%N2)

SAR-based method should employ a quintuple integration for
each image voxel as in [15]. On the contrary, the proposed
method requires around O(N% NZ), since it requires only a
searching operation to the first scattering points obtained by
RPM (O(Nx Ny)) for each range point (O(Nx Ny )). Table I
shows a comparison for computational times using an Intel
Pentium D 2.8-GHz processor with 800-MB memory, and
the computational complexity for each method. In this case,
Nx = Ny =101, N, = N, = 101, and N, = 51, where
each voxel size is 0.05\. This table shows that the computation
required for the proposed method is reduced to 10° times that of
the conventional method. Moreover, even if the fast processing
of the SAR like omega-k migration [18] were to be adopted to
double scattering aperture synthesis, it would have an essential
problem that the computation complexity severely depends, in
principle, on the voxel size or imaging range. On the contrary,
the proposed method, based on range points migration, is quite
different from SAR, and it does not need to determine the voxel
size or imaging region, owing to the mapping from the observed
range points to the target boundary points. The computation
required depends only on the number of observed range points,
which is on the order of the square of the antenna scanning
samples.

IV. CONCLUSION

This paper proposed a novel imaging algorithm for expanding
the imaging range, which efficiently utilizes the range derivative
of double scattered waves. The proposed method elicits some
inherent characteristics in the RPM method and achieves di-
rect shadow imaging without using any integration process. This
method has an outstanding advantage that it accomplishes ex-
tremely high-speed imaging by specifying a clear boundary ex-
traction, simultaneously extending the visible region without a
priori knowledge of target or surroundings. It has the additional
advantage that the target boundary can be expressed as a group
of target points, which enables the identification of an edge or

wedge region and helps to classify the target structure. Numer-
ical simulations in the 2-D and 3-D models, including mul-
tiple objects and concave shaped objects showed that the pro-
posed method substantially extended the imaging range with ex-
tremely high speed, even if the model errors and random noises
are added to the received data. This exemplifies a significant ap-
plicability to the realistic radar sensing scenario. Particularly for
the 3-D problem, it is a more than 10° times improvement com-
pared with that of the conventional SAR-based method as to the
computational complexity. Consequently, this method can sig-
nificantly contribute to the design of real-time sensors, as found
in robots or security systems.

APPENDIX A
DERIVATION OF (7)

0Zp/0X is divided into three terms as

079

8ZD o 1 8Z1 aZS
X <W X Tox ) (33)
Here, Zp is expressed as
Zi1+Zy+ 7
Zp = % (34)

where 71 = \/(xl—X)2+z%7 Zy = (./I:Q_X)Q‘}‘Z%.,
Z3 = /(1 — 12)% + (21 — 22)? hold. Each partial derivative
of X is given as

0% o1

X 4 % ax 33
%:—xQZ_ZX-FeQ'% (36)

where
s
_ <:172Z—3:171722 —21> 40)
25 -

hold. In this case, we assume that the reflection path of the
double scattered path satisfies the law of reflection and the fol-
lowing relationships hold:

o
8—? (e1 —e3) =0 (43)
3?2 . (32 + 33) = 0. (44)

axX
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Fig. 30. Relationship among e, e2, e2dp, /90X, and Op,/0X.

Fig. 30 shows the relationship among those parameters. Substi-
tuting these equations to (35)—(37), (7) is obtained.

APPENDIX B
DERIVATION OF (10)

Using p,, es, Z1, Z2, and Zp defined in Section II-C, p, is
expressed as

Py =0, +(2Zp —Z1— Zs)es (45)

Obviously, the next equation holds from the definition of Z5:

Zy = |lpy —prll = llp1 — P + (2ZDp — Z1 — Z2)es||. (46)

Squaring the both side of (46) and rearranging as to Zs, (10) is
obtained. This relationship obviously holds in 3-D problem.

APPENDIX C
DERIVATION OF (27)

We introduce the partial derivatives of Zp for the two direc-
tions along X and Y axis as

0Zp 1 (0Zy 0Z> 073

ox 2 (a—x ox T a_X> “7)

0Zp 1 0Z1 0Zy 023

oy _§<a_y+a_y+a_y> (“48)
where Zp = (Zy + Zs + Z3)/(2).
Z1 = V(e = X)2+ (i —Y)2 + 27,
% = V(ws = X)? +(y2 = Y)’ +23, and

Zy = /(w1 —22)2+ (11 — y2)® + (21 — 22)? hold. In the
similar to the 2-D case in (35)—(37), the following equation
as to 0Zp/dY holds:

071 y1 =Y Ip,
Jer gt 2 i £ 4
oY 7 + e oY (49)
8Z2 - Y2 — Y 8p2
i Zs + es oY (50)
073 dp, Op;
ay @ <8Y oY oD
where 0X/9Y = 0 is used, and
[T~ X y—-Y =z
e = ( 7 7 7Z1) (52)

= <$2Z_3$1 1/2Z_3yl7 72Z_321) 9

hold, where 0y /0x1 = 0 and Jy/dxs = 0 are used. Then,
the similar relationships hold as

B
%-(e1 —e3) =0 (57)
B
% (e2 + e3) = 0. (58)

Substituting them to (49)—(51), (27) as to 9Zp /Y is derived.
Using the same approach, (27) for 9Zp /90X is obtained.

REFERENCES

[1] T.C. Williams, J. M. Sill, and E. C. Fear, “Breast surface estimation for
radar-based breast imaging system,” IEEE Trans. Biomed. Eng., vol.
55, no. 6, pp. 1678-1686, Jun. 2008.

[2] D. W. Winters, J. D. Shea, E. L. Madsen, G. R. Frank, B. D. Van

Veen, and S. C. Hagness, “Estimating the breast surface using UWB

microwave monostatic backscatterer measurements,” IEEE Trans.

Biomed. Eng., vol. 55, no. 1, pp. 247-256, Jan. 2008.

D. L. Mensa, G. Heidbreder, and G. Wade, “Aperture synthesis by ob-

ject rotation in coherent imaging,” IEEE Trans. Nucl. Sci., vol. NS-27,

no. 2, pp. 989-998, Apr. 1980.

D. Liu, G. Kang, L. Li, Y. Chen, S. Vasudevan, W. Joines, Q. H. Liu,

J. Krolik, and L. Carin, “Electromagnetic time-reversal imaging of a

target in a cluttered environment,” /EEE Trans. Antenna Propag., vol.

53, no. 9, pp. 3058-3066, Sep. 2005.

D. Liu, J. Krolik, and L. Carin, “Electromagnetic target detection in

uncertain media: Time-reversal and minimum-variance algorithms,”

IEEE Trans. Geosci. Remote Sens., vol. 45, no. 4, pp. 934-944, Apr.

2007.

J. Song, Q. H. Liu, P. Torrione, and L. Collins, “Two-dimensional and

three dimensional NUFFT migration method for landmine detection

using ground-penetrating radar,” IEEE Trans. Geosci. Remote Sens.,

vol. 44, no. 6, pp. 1462—1469, Jun. 2006.

F. Soldovieri, A. Brancaccio, G. Prisco, G. Leone, and R. Pieri, “A

Kirchhoff-based shape reconstruction algorithm for the multimonos-

tatic configuration: The realistic case of buried pipes,” IEEE Trans.

Geosci. Remote Sens., vol. 46, no. 10, pp. 3031-3038, Oct. 2008.

A. Massa, D. Franceschini, G. Franceschini, M. Pastorino, M. Raf-

fetto, and M. Donelli, “Parallel GA-based approach for microwave

imaging applications,” IEEE Trans. Antenna Propag., vol. 53, no. 10,

pp. 3118-3127, Oct. 2005.

[9] T. Sakamoto and T. Sato, “A target shape estimation algorithm for
pulse radar systems based on boundary scattering transform,” /IEICE
Trans. Commun., vol. E87-B, no. 5, pp. 1357-1365, 2004.

[10] S. Kidera, T. Sakamoto, and T. Sato, “High-resolution and real-time
UWB radar imaging algorithm with direct waveform compensations,”
IEEE Trans. Geosci. Remote Sens., vol. 46, no. 11, pp. 3503-3513,
Nov. 2008.

[11] S.Hantscher, A. Reisenzahn, and C. G. Diskus, “Through-wall imaging
with a 3-D UWB SAR algorithm,” IEEE Signal Process. Lett., vol. 15,
no. 2, pp. 269-272, Feb. 2008.

[12] H. Wang, H. Xue, and M. Ge, “Application and practice of system
integration approach in intelligent human motion recognition,” in Proc.
Int. Conf. Comput. Sci. Software Eng., 2008, vol. 1.

[13] S. Kidera, T. Sakamoto, and T. Sato, “Accurate UWB radar 3-D
imaging algorithm for complex boundary without range points con-
nections,” IEEE Trans. Geosci. Remote Sens., vol. 48, no. 4, pp.
1993-2004, Apr. 2010.

[14] S. Kidera, T. Sakamoto, and T. Sato, “Super-resolution UWB radar
imaging algorithm based on extended capon with reference signal
optimization,” IEEE Trans. Antenna Propag., vol. 59, no. 5, pp.
1606-1615, May 2011.

[3

—

[4

[l

[5

[t}

[6

—

[7

—

[8

[t}



996 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 60, NO. 2, FEBRUARY 2012

[15] S. Kidera, T. Sakamoto, and T. Sato, “Experimental study of shadow
region imaging algorithm with multiple scattered waves for UWB
radars,” in Proc. PIERS’09, Aug. 2009, vol. 5, no. 4, pp. 393-396.

[16] J.M.F.Mouraand Y. Jin, “Detection by time reversal: Single antenna,”
IEEE Trans. Signal Process., vol. 55, no. 1, pp. 187-201, Jan. 2007.

[17] G. Shi and A. Nehorai, “Cramer—Rao bound analysis on multiple scat-
tering in multistatic point-scatterer estimation,” IEEE Trans. Signal
Process., vol. 55, no. 6, pp. 2840-2850, Jun. 2007.

Tetsuo Kirimoto (M’91-SM’97) received the
B.S., M.S., and Ph.D. degrees in communication
engineering from Osaka University, Osaka, Japan, in
1976, 1978, and 1995, respectively.

From 1978 to 2003, he was with Mitsubishi
Electric Corp. studying radar signal processing.
From 1982 to 1983, he was a Visiting Scientist at the
Remote Sensing Laboratory, University of Kansas.
[18] X. Xu, E. L. Miller, and C. M. Rappaport, “Minimum entropy regu- From 2003 to 2007, he was with the University of

larization in frequency-wavenumber migration to localize subsurface Kitakyushu as a Professor. Since 2007, he has been
objects,” IEEE Trans. Geosci. Remote Sens., vol. 41, no. 8, pp. with the University of Electro-Communications,
1804-1812, Aug. 2003. Tokyo, Japan, where he is a Professor at the Graduate School of Informatics
[19] Federal Communications Commission (FCC), Office of Engineering  and Engineering. His current study interests include digital signal processing
and Technology (OET) Bulletin No. 65, Supplement C, Aug. 1997, p.  and its application to various sensor systems.
35. Prof. Kirimoto is a member of the Institute of Electronics, Information, and
Communication Engineers (IEICE) and the Society of Instrument and Control
Shouhei Kidera (M’11) received the B.E. degree  Engineering (SICE) of Japan.
in electrical and electronic engineering from Kyoto
University, Kyoto, Japan, in 2003 and M.1. and Ph.D.
degrees in informatics from Kyoto University in
2005 and 2007, respectively.

He is an Assistant Professor in the Graduate

School of Informatics and Engineering, University

of Electro-Communications, Tokyo, Japan. His
¢ current research interest is in advanced signal
@ processing for the near field radar, UWB radar.

Prof. Kidera is a member of the Institute of Elec-
tronics, Information, and Communication Engineers of Japan (IEICE) and the
Institute of Electrical Engineering of Japan (IEEJ).




